
Chapter 2 : Object-Oriented Software Development

ASS IT .PROF . JUTHAWUT CHANTHARAMALEE

CURRICULUM OF COMPUTER SCIENCE

FACULTY OF SC IENCE AND TECHNOLOGY , SUAN DUSIT UNIVERSITY

Outline of this presentation

1. Software Process

2. Object-Oriented Software Development

3. Software Life-Cycle Models

4. Object Orientation

5. Software Quality Assessment

Software Process
The software process is the way we produce software.

It incorporates the software life-cycle model, the tools we use, and
the individuals building the software.

Object-Oriented Software Development
Three key words.
1. Software

2. Development

3. Object Orientation

Let us look at each in turn

Software
1. Programs

2. Documentation during the development of programs (e.g. specification)

3. Primary aids for running the programs (e.g. user manuals)

4. Secondary aids for running the programs (e.g. key boards overlays)

Software is not just programs!

Software Life Cycle
1. Software is like humans.

2. It has a life cycle.

3. Software in a system is conceptualized first.

4. It becomes obsolescent at the end.

5. The period in between is called the software life cycle.

Software Life Cycle Models
1. Build-and-Fix Model

2. Waterfall Model

3. Rapid prototyping model

4. Incremental Model

5. Spiral Model

6. Concurrent Development Model

7. Formal Methods Model

Built-and-Fix Model
1. Unfortunately, many s/w products are developed with built-and-fix model.

2. Without specification or any attempt in design, just build a product, and
reworked as many times needed to satisfy the customer.

3. Unsatisfactory for any size of s/w development, we better specify the various
phases of software process.

Why use a life cycle model?
1. Life cycle model breaks down the development process into phases or stages.

2. This is because software development is complex.

3. Breaking down the development process makes it easier to manage.

4. Each phase can be performed in various ways.

Waterfall Model
Requirement Verify

Implementation Testing

Planning Verify

Retirement

Design Verify

Integration Testing

Operation Mode

Specification Verify

Development

Maintenance

Changed Requirements verify

Rapid Prototyping Model
A rapid prototype is a working model that is functionally

equivalent to a subset of the product (internal structure is not
concerned yet).

The sole use of rapid prototyping is to determine what the client’s
real needs are, construct the rapid prototype as rapidly as possible to
speed up the s/w development process.

Rapid Prototyping Model
Rapid Prototype Verify

Implementation Testing

Planning Verify

Retirement

Design Verify

Integration Testing

Operation Mode

Specification Verify

Development

Maintenance

Changed Requirements verify

Incremental Model
The s/w product is designed, implemented, integrated, and tested as a series

of incremental builds, where a build consists of code pieces from various
modules interacting to provide a specific functional capability.

It is sometimes necessary to re-specify, re-design, re-code, or at worst, throw
away what has already been completed and start again.

Incremental Model
Requirement Verify

Planning Verify

Retirement

Architectural Design Verify

Operation Mode

Specification Verify

Development

Maintenance

For each build:
Perform detailed design,
implementation,
and integration. Test.

Deliver to client.

Spiral Model
The idea of minimizing risk via the use of prototypes and other

means is the concept underlying the spiral model.

A simplified spiral model is as a waterfall model with each phase
preceded by risk analysis.
◦ Before commencing each phase, an attempt is made to control (resolve) the

risks. If it is impossible to resolve all the significant risks at a stage, then the
project is immediately terminated.

Full Spiral Model [Boehm, IEEE 1998]

Review

Commitment

Partition

Determine
objectives,
alternatives,
constraints

Progress
through steps

Cumulative
cost

Plan next phase

Develop, verify
next-level product

Evaluate alternatives,
identify, resolve risks

Risk
Analysis

Concept of
Operation

Requirement plan
life-cycle plan

Prototype 1 Prototype 2 Prototype 3
Operational
Prototype

Risk
Analysis

Risk
Analysis

Risk
Analysis

Simulations, models, benchmarks

Software
Requirements

Software
Product
Design

Detailed
Design

Development Plan

Integration and Test
Plan

Implementation
Acceptance
Test

Integration
Test

Unit
Test

CodeRequirement
Validation

Design validation
and verification

Software Development
Software is developed using a life cycle model.

Just a life cycle model is insufficient for development.

We need:
◦ A broad philosophy

◦ A set of tools which support the philosophy.

◦ A language which supports the philosophy.

Software Development Paradigm
1. A paradigm provides a general approach to work during each phase of
the life cycle model.

2. A paradigm is a broad philosophy.

3. A paradigm is not a specific model.

Some Software Development Paradigms
1. Functional Composition

2. Logic Programming

3. Structured Development

4. Object Orientation

Functional Development
1. A problem is expressed in termed of a set of mathematical functions.
◦ e.g. Double(x) = Add(x, x).

2. An algorithm is not specified.

3. Language such as Miranda, Gofer, Haskell support this paradigm.

4. Poor execution speed.

Logic Programming
Consists of a problem description only.
◦ e.g. Factorial(0) = 1.

Factorial(N) = N x Factorial(N -1).

Doesn’t describe how to solve the problem.

Languages Prolog & Lisp support this paradigm.

Structured Development
Also called SASD, SADT & Functional Decomposition.

Breaks the system into processes & decomposes them.

Languages C, Fortran, Pascal, Cobol, Basic and a lot more support this paradigm.

By far the most popular paradigm.

Object Orientation
▪Most recent paradigm.

▪Treats a problem as a collection of objects.

▪Becoming very popular now.

▪More and more languages support this paradigm now.

Tools for Object Orientation
▪Rambaugh (OMT)

▪Coad-Yourdon

▪Booch

▪UML

Languages for OO
▪C++

▪Smalltalk

▪Eiffel

▪Object C

▪Object Pascal

▪Java

Software Quality Assessment
Capability Maturity Model
◦ a strategy for improving the software process, irrespective of the actual

life-cycle model used.

ISO 9000
◦ ISO 9000 is a series of five related standards that are applicable to a

wide variety of industrial activities, including design, development,
production, installation, and servicing.

◦ Standard ISO 9001 for quality systems is the standard that is most
applicable to software development.

◦ ISO 9000-3 gives specific guidelines to assist in applying ISO 9001 to
software development.

Capability Maturity Model (CMM)
▪Proposed by W. Humphrey (1986), Software Engineering Institute (SEI), CMU

▪The strategy of CMM is to improve organizational-wide management of
software process.

▪The improved process should result in better quality software, then less
suffering from time and cost overrun.

Maturity Level
1. Initial Level
2. Repeatable Level
3. Defined Level
4. Managed Level
5. Optimizing Level

Characterization
1. Ad hoc process
2. Basic project management
3. Process definition
4. Process measurement
5. Process control

Chapter 1 : The End (Any Question?)

